

الروابط الكيميائية :

هي قوى تجاذب تربط ذرات العنصر ببعضها لتكوين مواد

طاقة ممتلئ في ذرات	في أعلى مستوى	الإلكترونات الموجودة أ
		العنصر تسهى

عدد إلكترونات التكافؤ للبوتاسيوم رقم المجموعة 1A

عدد إلكترونات التكافؤ للكالسيوم رقم المجموعة 2A

عدد إلكترونات التكافؤ للأكسجين رقم المجموعة 6A

 $_2He$ عدد إلكترونات التكافؤ يساوي رقم المجموعة ماعدا الهيليوم لأنه يحتوى على 2 إلكترون تكافؤ بينما يقع فى المجموعة الثامنة

أكمل الفراغات التالية بما يناسبها:

1– عدد إلكترونات التكافؤ في عناصر المجموعة 2A يساوي ...

2– عدد إلكترونات التكافؤ في عناصر المجموعة 5A يساوي 2

عدد إلكترونات التكافؤ المجموعة $6 \mathrm{A}$ التي تحتوي على كل من الأكسجين-10

والكبريت

..... الإلكترونات التكافؤ في ذرة الكربون $_6C$ عدد الإلكترونات التكافؤ في -8

الترتيبات النقطية : مي الأشكال التي توضح إلكترونات التكافؤ في صورة نقاط

	1A	2A	3A	4A	5A	6A	7A	8A
1	Н.							He:
2	Li.	.Be.	.B.	.C.	.N.	:O. ·	:F.	 :Ne:

بثال: اكتب الترتيب الإلكتروني النقطي للذرات التالية:

```
_{12}Mg
<sub>15</sub>P
_{17}Cl
<sub>10</sub>Ne
                    -الذرة عندما تفقد إلكترونات التكافؤ وتحمل شحنة موجبة (
                    -الذرة عندما تكتسب إلكترونات وتتحول الى أيون سالب
     -تميل الذرات إلى بلوغ الترتيب الإلكترونى الخاص بالغاز النبيل خلال عملية
                                                                   نكوين المركبات
  أيونات تتكون عندما تكتسب ذرات الهالوجينات (F,Cl,I,Br) الكترونات-
                                                                             ئسمىي
    ُميل ذرات العناصر الفلزية الى <mark>فقدان إلكترونات</mark> التكافؤ الخاص بها حيث تبقى
                                نُمانى إلكترونات كاملة في المستوى الطاقة الأخير.
                                            Na^+ + e^-
                            Na
                                          كاتيون صوديوم
                       اذرة صوديوم
_{11}Na \rightarrow 1s^2 \ 2s^2 \ 2p^6 \ 3s^1 \rightarrow 1s^2 \ 2s^2 \ 2p^6
    تُميل ذرات العناصر اللافلزية الى اكتساب إلكترونات لتكتمل غلاف تكافؤها بثمان
           _{17}Cl: 1s^2 , 2s^2 2p^6 , 3s^2 3p^5 
ightarrow 1s^2 , 2s^2 2p^6 , 3s^2 sp^6 .لكترونات
                                  +e^{-}
                                         أنبون كلوريد شحنة سالية –1
            ذرة كلور متعادلة
```


		•	كم عدد الإلكترونات ا
[$_9F$) ب $-$ الفلور		أ– الكالسيوم (₂₀ Ca)
	د-الأكسجين (7	[ج-الألمونيوم (₁₃ Al
		متكون :	اكتب صيغة الأيون الم
$_4Be$ البيريليوم	$_3Li$ الليثيوم	الكالسيوم ₂₀ Ca	$_{13}Al$ الألمونيوم
	-		
ما لكي:	بع المقابل لها في م	$\sqrt{()}$ في المر	اختر الإجابة الصحيحة
•	•	**	1- تحتوي عناصر الر
			□إلكترون واحد
	كأده الكتمنات	1	كإشعرون واحد □الإلكترونين
			2– الترتيب الإلكتروi – -
			16S
			3- الترتيب الإلكترون
			9 <i>F</i> □ 4- الترتيب الإلكترون
10^{Ne}	Na	0 2	$K^+\square$
		ىن:	5- الأيون هو عبارة ء
بن	 رابطة بين ذرتب 		• ذرة مضاف إليد
، ما بروتون	 ذرة أضيف إليه 		• ذرة مشحونة ب
	تى:	وين روابط أيونية ح	6 -العناصر تميل لتك
		ـة مرتفعة	 تصبح ذات طاق
	ىرب غاز نبيل	ِكيب الإلكتروني لأة	• تتشابه في التر
			 تصبح أقل ثبات
	ىق	نات كهربائية مرتفع	■ تصبح ذات شح

كمل الجمل والعبارات التالية بما يناسبها علمياً [– عندما تفقد الذرة إلكتروناً أو أكثر فإنها تتحول إلى الترتيب الإلكتروني $g^{2+}Mg^{2+}$ يشبه ترتيب الغاز النبيل هو...-23– عندما تفقد الذرة إلكترونات التكافؤ فأنها تصبح ـــــ ـــ الترتيب الإلكتروني لأيون الصوديوم مماثل للغاز نبيل هو ــــ -2عدد إلكترونات التكافؤ في أيون Ne , Na^+ يساوي -3أنيون الأكسيد O^{2-} يشبه ترتيبه الغاز النبيل هو $-\epsilon$ 7-عدد الإلكترونات التي يجب أن تكتسبها ذرة الكبريت لتكون أيون الكبريتيد ⁻²2 يساوى</mark> لتكون المواد من ذرات مرتبطة ببعضها بقوى تجاذب تعرف بـ ${}^{\circ}$ 1/- تميل الذرة الى اكتساب أو فقدان الإلكترونات حتى ـ 12- تميل ذرات _____الى اكتساب الإلكترونات التكافؤ الخاص بها 13- عندما تكتسب الذرة المتعادلة إلكترونات فإنها تتحول الى أيون ـ بسهای . 1/– تسمى الأيونات التى تتكون عندما تكتسب الكترونات كل من ذرات الكلور ،الهالوجينات الأخرى بــ انيون الكلوريد $c\,l^-$ يشبه التركيب الإلكترونى لذرة غاز ______ -1تويل عناصر المجموعة 6A خلال تفاعلها مع الفلزات إلى -16،تكون أيون يحمل شحنة قدرها ـــ التركيب الإلكتروني لأنيون النيتريد (N^{3-}) يشبه التركيب الإلكتروني لذرة -1715– تميل ذرات الفلزات القلوية خلال التفاعل الكيميائي إلى _____ إلكترون

الرابطة الأيونية :

هي قوى التجاذب التي تربط الأيونات المختلفة بالشحنة

(11Na, 17Cl) مستخدماً الترتيبات النقطية وضح اتحاد عنصري-1

 $({}_{12}Mg, {}_{8}O)$ مستخدماً الترتيبات النقطية وضح اتحاد عنصري-2

 $_{8}O$ اتحاد البوتاسيوم $_{19}K$ والأكسجين $_{19}$

 $({}_{12}Mg, {}_{17}Cl)$ مستخدماً الترتيبات النقطية وضح اتحاد عنصري-4

$_{9}F$ مستخدماً الترتيبات النقطية وضح اتحاد عنصري الألومينيوم $_{13}A$ والفلور $_{9}F$

 $_{12}Mg$ مع $_{7}N$ وضح باستخدام الترتيبات النقطية ارتباط $_{7}N$ مع $_{12}$

باستخدام الصيغة الإلكترونية النقطية وضح كيف يتم الارتباط الكيميائي بين العنصرين ₁₇Zو₁₂A موضحاً نوع الرابطة واسم الناتج

طريقة الارتباط:

اسم المركب:

باستخدام الصيغة الإلكترونية النقطية وضح كيف يتم الارتباط الكيميائي بين العنصرين ₁₁Z , ₈A موضحاً نوع الرابطة واسم الناتج

طريقة الارتباط:

نوع الرابطة:

اسم المركب:

نوع الرابطة:

المركبات الأيونية : هي المركبات المتكونة من مجموعات متعادلة كهربائياً من الأيونات المترابطة ببعضها بقوى الكتروستاتيكية

خواص المركبات الأيونية :

2- درجة انصمارها وغليانها عالية

1- جميع المركبات الأيونية مواد صلبة متبلرة فى درجات الحرارة العادية

4– لا توصل التيار بل مصمورها ومحلولها يوصل التيار 3- معظمها يذوب في الماء

قوى التجاذب بين الجزيئات كبيرة تجعل تركيبها ثابت

علل : محاليل و مصاهير المركبات الأيونية توصل التيار الكهربائي

أي الخواص التالية تميز المركب الأيوني:

- انخفاض درجة الانصهار
 تحدث مشاركة الإلكترونات أثناء تكوينه
 - محلوله لا يوصل التيار
 محلوله ومصهوره يوصل التيار

-المركب الناتج من اتحاد نواتج تأين الفلز واللافلز:

- يذوب في الماء ولا يوصل الكهرباء
 لا يذوب في الماء ولا يوصل الكهرباء
- پذوب فى الهاء ويوصل الكهرباء
 لا پذوب فى الهاء ويوصل الكهرباء

ئتابة الصيغة الكيميائية للمركبات الكيميائية الأيونية :

- 1- يكتب اسم المركب باللغة العربية
- يكتب تحت كل عنصر أو مجموعة ذرية رمزها الكيميائي -2
- 3- يكتب تحت كل عنصر أو مجموعة ذرية التكافؤ الخاص بها دون كتابة الإشارة لسالبة إذا وجدت
 - 4- إذا كان هناك إمكانية للاختصار للتكافؤ فيجب الاختصار
 - 5- يتم تبديل التكافؤات
- ﴾– تكتب الصيغة الكيميائية النهائية مع ملاحظة انه إذا كانت هناك مجموعة ذرية ستأخذ رقم أكبر من الواحد فلابد أن توضع داخل أقواس

الأيونات التالية:	من أزواج	لتى تتكون	للمركبات ا	الكيميائية	الصنغ	کتب
	- 11			** ** **		

S^{2-} , K^+ -	•	
$oldsymbol{O}^{2-}$, $oldsymbol{C}a^{2+}$ -	······	•••••
SO_4^{2-} , Na^+ -		
PO_4^{3-} Al^{3+} -	·	

	كربونات	-	أكسيد		کلورید
	الألمنيوم		المغنسيوم	_	الصوديوم
B.	فوسفات	-	أكسيد	_	فلوريد
	الكالسيوم		الحديد III	-	الفضة
	فوسفات		أكسيد		كلوريد
	الألمنيوم		الليثيوم		الرصاص
	كربونات		هيدروكسيد		يوديد
	الكالسيوم		الباريوم		الألمنيوم
	كبريتات		نترات		أكسيد
	النحاس II		البوتاسيوم		البوتاسيوم

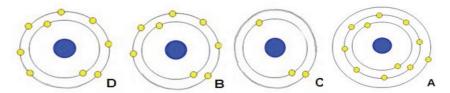
الرابطة التساهمية :

(الرابطة التي يتقاسم فيها الذرتان زوجاً واحدا من الإلكترونات (
(الرابطة التي يتقاسم فيها الذرتان زوجان من الإلكترونات
(الرابطة التي يتقاسم فيها الذرتان ثلاثة أزواج من الإلكترونات (
()	صيغ كيميائية توضح ترتيب الذرات في الجزيئات والأيونات عديدة الذرات
	الروابط التساهمية: تحدث بين (لافلز ولا فلز)
	<mark>قاعدة الثمانية الخاصة بالرابطة التساهمية:</mark> تحدث المساهمة بالإلكترونا
زات النبيلة.	الذرات المشاركة في تكوين الرابطة التساهمية الترتيبات الإلكترونية للغا
	تسمى الوحدة البنانية للمركبات الأيونية " الصيغة"
	في حين تسمى الوحدة البنائية للمركبات التساهمية " الجزيء

وضح بالمعادلات كتابة الصيغ الإلكترونية النقطية لجزيئات المركبات الناتجة عن:

- ارتباط ذرتي هيدروجين H لتكوين جزيء الهيدروجين -
 - ارتباط ذرتي فلور $_9F$ لتكوين جزيء الفلور: -

ارتباط ذرتي كلور $_{17}Cl$ لتكوين جزيء الكلور: -


- ارتباط الهيدروجين $_{17}Cl$ ع الكلور $_{17}Cl$ لتكوين جزيء كلوريد الهيدروجين:
 - ارتباط الهيدروجين H هع الأكسجين لتكوين جزيء الهاء:
 - ارتباط الهيدروجين H مع النيتروجين $_{7}N$ لتكوين جزيء الأمونيا
 - $oldsymbol{O}_2$ ارتباط ذرتي أكسجين $oldsymbol{O}_0$ لتكوين جزيء الأكسجين -
 - ارتباط ذرتی نیتروجین N لتکوین جزیء النیتروجین -
 - 1ـعدد الأزواج الإلكترونية غير المشاركة في جزيء الفلور يساوي
 - 2-عدد الأزواج الإلكترونية غير المشاركة في جزيء الماء يساوي
 - 3-عدد الأزواج الإلكترونية غير المشاركة في جزيء الأمونيا يساوي.
 - 4-عدد الأزواج الإلكترونية المشاركة في جزيء الأمونيا يساوي
 - 5-عدد الإلكترونات التي تتقاسمها ذرة الكلور والهيدروجين لتكوين كلوريد الهيدروجين

اختر الإجابة الصحيحة للأسئلة التالية بما يناسبها علمياً:

	، الأكسجين رابطة:	ي الأكسجين في جزيء	الرابطة بين ذرت -1
□أيونية	🗖 ثلاثية تساهمية	🗖 ثنائية تساهمية	🗖 أحادية تساهمية
	النتروجين رابطة:	ي النتروجين في جزيء	2 - الرابطة بين ذرتج
□أيونية	🗖 ثلاثية تساهمية	🗖 ثنائية تساهمية	🗖 أحادية تساهمية
	يء الأمونيا بروابط:	، وع النتروجين في جزز	3 - يتحد الهيدروجين
□أيونية	□ثلاثية تساهەية	🗖 ثنائية تساهمية	🗖 أحادية تساهمية
لذرة غاز:	شبه الترتيب الإلكتروني	ني لأيون البوتاسيوم ير	4 – الترتيب الإلكترو
$_{18}Ar\Box$	10N□	₁₉ K□	$_{9}F\Box$
لذرة غاز.	شبه الترتيب الإلكتروني	ي لأيون الأكسيد $^{-2}$ O ي	5-الترتيب الإلكترون
$_{18}Ar\square$	$10Ne\Box$	$_{11}Na\square$	₁₆ S□
!	تساهميتين ثنائيتين وهو	ـة يحتوي على رابطتين	6-أحد الجزيئات التالي
$N_2 \square$	co□	$H_2O\square$	$CO_2\square$
	ساهميا	عر التالية تكون مركباً تـ	7-أي من أزواج العناد
	□الصوديوم والكلور	یت	🗖 البوتاسيوم والكبر
بن	🗖 الكالسيوم والنيتروج	ور	🗖 الهيدروجين والكلر
	ىي عدا واحد:	لية يعتبر مركب تساهم	8- أحد المركبات التا
<i>F</i> 2□	$Mg_3N_2\square$	$NH_3\square$	$HCl\square$
	بء الهيدروجين رابطة:	ي الهيدروجين في جزع	9 – الرابطة بين ذرته
□أيونية	🗖 ثلاثية تساهوية	🗖 ثنائية تساهوية	□أحادية تساهمية

ديك أربع ذرات A , B, C , D والتي يتضح شكلها كالآتي :

مطلوب : إكمال الجدول الآتي :

	عدد إلكترونات التكافؤ
	بالذرة B
نوع الرابطة	
معادلة الارتباط	نوع الرابطة المتكونة بين
	العنصرين A, D
	و معادلة الارتباط
نوع الرابطة –	
معادلة الارتباط	نوع الرابطة المتكونة بين
	ذرتين من العنصر B
	ومعادلة الارتباط
الذوبان في الماء	خواص المركبAD
توصيل محلوله للتيار الكهربائي	(الذوبان في الماء)
	و(التوصيل الكهربائي)

الرابطة التساهمية التناسقية :

هي رابطة تساهم فيها ذرة واحدة بكل من إلكترونات الرابطة

- 1- ارتباط الكربون مع الأكسجين لتكوين أول أكسيد الكربون
 - 2- ارتباط كاتيون الميدروجين مع جزيء الأمونيا
 - 3- ارتباط كاتيون الهيدروجين مع جزيء الماء

برابطة	ا-يرىبط كانيون الهيدروجين مع جزيء الامونيا في كانيون الامونيوم (NH_4)
بينها يسهى كاتيون الهيدروجين ورابطة ورابطة	برابطة .
3- جزيء أول أكسيد الكربون CO يحتوي على	كاتيون الهيدرونيوم (H_3O^+) تسمى ذرة الأكسجين بالذرة
4- الصيغة الكيميائية لكاتيون الأمونيوم	بينما يسمى كاتيون الهيدروجين
5-يرتبط كاتيون الميدروجين مع جزيء الماء في كاتيون الميدرونيوم (H_3O^+) برابطة	-3جزيء أول أكسيد الكربون CO يحتوي على ــــــــــــــــــــ ورابطة ــــــــــــــــــــــــــــــــــــ
برابطة أحد الصيخ التالية يحتوي على نوعين من الروابط :	4- الصيغة الكيميائية لكاتيون الأمونيوم
أحد الصيغ التالية يحتوي على نوعين من الروابط :	(H_3O^+) يرتبط كاتيون الهيدروجين مع جزيء الماء في كاتيون الهيدرونيوم -5
	برابطة
$NH_3 \square$ $HCl \square$ $H_3O^+\square$ $H_2O\square$	أحد الصيخ التالية يحتوي على نوعين من الروابط :
	$NH_3 \square$ $HCl \square$ $H_3O^+\square$ $H_2O\square$