

الفصل الدراسي الثاني مؤسسة سما التعليمية

حولي مجمع بيروت الد<mark>ور الأول</mark>

المادة

الرياضيات

الصف

ثانی عشر علم

لللما SAMA

لطلب المذكرات 60084568

www.samakw.com

أ/ وليد حسين

أسئلة

للاشتراك بالمراجعات الحضورية 50855008

الاستاذ: وليد حسين 50522331

$$\int \frac{x^2 - 4x + 3}{x - 1} \ dx$$

$$\int \left(\frac{x^2-2}{x^2}\right)^2 dx$$

SAMA

$$\int \frac{x^4 - 27x}{x^2 - 3x} dx$$

$$\int \frac{x-1}{\sqrt{x}+1} dx$$

$$\int \frac{x+1}{\sqrt[3]{x}+1} dx$$

Louw SAMA

$$\int \frac{3(\sqrt[3]{x}-5)dx}{\sqrt[3]{x^2}}$$

$$\int \frac{\left(\frac{1}{x}+4\right)^5}{x^2} dx$$

SAMA

$$\int \frac{5}{\sqrt{x}(\sqrt{x}+2)^3} \, dx$$

قلب الأم رياضيات اللهم ع**ذكرات قلب الأم** قلب الأم لياضيات الإسموا مذكرات قلب الأم قلب الأم لياضيات الإسمال عند الأم رياضيات اللام اللهم اللهم اللهم الأم اللهم ال

الاستاذ: وليد حسين 50522331

$$\int (x^2 - 1)\sqrt{x^3 - 3x + 5} \, dx$$

$$\int x(2x-1)^3 dx := \int x(2x-1)^3 dx$$

$$\int x^5 \sqrt{3 + x^2} dx \qquad :$$

لأم ر باضبات الليما مذكاات قلب الأد

يات سما مذكرات قلب الأم قلب الأ

$$\int x^5 \sqrt[3]{x^3 + 1} \, dx$$

$$\int \left(\frac{-1}{x^2} + 5\sin 3x\right) dx$$

$$\int (x^2 + \cos 2x) dx \qquad : 2x$$

أو جد:
$$\int x \sec^2(x^2+2) dx$$

قلب الآم رياضيات اللهما **مذكرات قلب الأم** قلب الآم رياضيات اللهما **مذكرات قلب الأم**

$$\int \sec^2 x \cdot \tan x \, dx$$

$$\int \sin^5(x+1) \cdot \cos(x+1) dx$$

$$\int \left(3 + \sin 2x\right)^5 \cos 2x \, dx$$

$$\int \frac{\sin x}{\cos^3 x} \, dx$$

$$\int \sqrt{1 + \sin x} \cos x \, dx$$

$$\int \sqrt{\cot x} \csc^2 x \, dx$$

$$\int \frac{dx}{(\cos^2 x)\sqrt{1+\tan x}}$$

$$\int \csc^5 x \cot x \, dx \qquad \text{i.e.}$$

Ļ	AMA dv
SAMA SAMA	$\frac{dy}{dx}$ أو جد
$y=5^{\sqrt{x+1}}$	$y = e^{cscx}$
(1)	$y = \ln(\ln x)$
$y = \ln\left(\frac{1}{r^2}\right)$	$y = m(m\omega)$
$y = \ln(2 - \cos x)$	$y = 8^{\tan x}$
Loui SAN	U W MA

Low SAMA

$$\int (2x+1)e^{x^2+x+4}dx$$

$$\int \frac{e^x}{e^x + 1} dx$$

$$\int (\cot x + x^2) dx$$

La.WU SAMA

$$\int \frac{x^3 - x}{x^4 - 2x^2} \, dx$$

Page 9

$$\int \tan x \, dx$$

$$\int x \cos x \, dx$$
 :

$$\int 3x \, e^{2x+1} \, dx$$

$$\int_{\mathbb{R}^n} \int_{\mathbb{R}^n} (x-3)e^{x-3} dx$$

Low SAMA

الاستاذ :وليد حسين 50522331

 $\int x \ln x \, dx$

 $\int x^2 \sin x \, dx \qquad \text{if } \int x^2 \sin x \, dx$

 $^{\mathrm{age}}11$

$$\int x^2 e^{x+2} dx := \int x^2 e^{x+2} dx$$

$$\int (x^2 - 2x) \cos x \, dx$$

LOUU SAMA

الاستاذ :وليد حسين 50522331

$$\int \frac{\ln(x)}{x^2} dx$$

$$\int \frac{\ln x}{\sqrt[3]{x}} dx$$

$$\int x^2 \ln x^2 dx$$

, age 13

الاستاذ :وليد حسين 50522331

 $\int x \cos(3x) dx$

 $\int f(x)dx$ مما يلى ثم أو جد الكسور الجزئيّة لكل دالة f مما يلى ثم

$$f(x) = \frac{2}{(x-5)(x-3)}$$

الاستاذ :وليد حسين 50522331

$$f(x) = \frac{2}{x^2 - 4x + 3}$$

لتكن الدالة f :

ناوجد:

(1) الكسور الجزئية

$$\int f(x)dx \quad (2)$$

SAMA

الاستاذ :وليد حسين 50522331

$$f(x) = \frac{2x-1}{x^2-4x+3}$$
 : f نتكن الدالة فأو جد:

- a الكسور الجزئية
 - $\int f(x) dx$

SAMA

الاستاذ :وليد حسين 50522331

$$\int \frac{-x^2+2x+4}{x^3-4x^2+4x} dx$$
 :أوجد

LOUU SAMA

الاستاذ: وليد حسين 50522331

$$\int \frac{x^2 - 3x + 7}{x^2 - 4x + 4} dx$$
 : i.e.

SAMA

18e 18

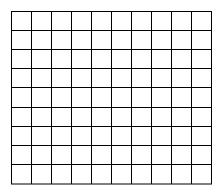
 $\int \frac{x^2 + 3x + 2}{(x - 3)^2} \, dx$

SAMA

$$\int_{1}^{2} \left(3e^{x} + \frac{e}{x} \right) dx$$

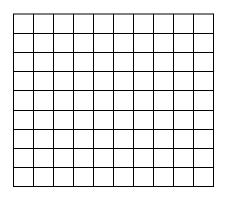
 $_{\rm age}19$

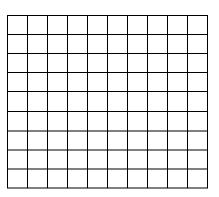
$$\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \left(\frac{1}{2}\sin 2x - \csc^2 x\right) dx$$


$$\int_{-3}^{4} |2x - 4| dx$$

Lo.WU SAMA

$$\int_{1}^{0} (x^{2} + x) dx \leq 0$$
 : أن أثبت أن ون حساب قيمة التكامل أثبت أن


أو جد قيمة
$$\int_1^5 (2-2x)dx$$
 بيانيًّا.



الاستاذ:وليد حسين 50522331

$$\int_0^3 -\sqrt{9-x^2}\ dx$$

$$\int_{-5}^{5} \sqrt{25 - x^2} \, dx$$

Page 22

$$\int_0^{\frac{\pi}{4}} \tan x \sec^2 x \, dx$$

الاستاذ :وليد حسين 50522331

$$\int_0^3 x \sqrt{x+1} \ dx$$

$$\int_{-2}^{0} \frac{x}{e^{x}} dx \quad : \int_{-2}^{\infty} \frac{x}{e^{x}} dx$$

$$\int_0^{\infty} \int_0^{\frac{\pi}{4}} x \sec^2 x \, dx \quad :$$

الاستاذ: وليد حسين 50522331

$$\int_{1}^{5} \frac{2x+8}{x^2+4x+3} \, dx$$

$$\int_{1}^{e} \frac{\ln^{6} x}{x} dx$$

$$\sum_{\text{edd}}^{6} \frac{dx}{x \ln x}$$

قنب الأم رياضيات المام المام

الاستاذ :وليد حسين 50522331

أو جد مساحة المنطقة المحددة بمنحنى الدالة $f(x) = x^2 + 5x + 4$ ومحور السينات.

أو جد مساحة المنطقة المحددة بمنحنى الدالة f ومحور السينات في الفترة المحددة:

$$f(x) = x^3 - 6x$$
, [0,3]

 $g(x) = -1 - x^2$: g الدالة $f(x) = e^x$: f الدالة $f(x) = e^x$: f الدالة f المنطقة المحددة بمنحنى الدالة f : f علمًا بأن المنحنيين للدالتين f : f غير متقاطعين.

SAMA

 $y_1 = x^2 + 2$, $y_2 = -2x + 5$ identity: $y_1 = x^2 + 2$ identity: $y_1 = x^2 + 2$ identity: $y_2 = x^2 + 2$ identity: $y_1 = x^2 + 2$ identity: $y_2 = x^2 + 2$ identity: $y_1 = x^2 + 2$ identity: $y_2 = x^2 + 2$ identity: $y_1 = x^2 + 2$ identity: $y_2 = x^2 + 2$ identity: $y_1 = x^2 + 2$ identity: $y_2 = x^2 + 2$ identity: $y_1 = x^2 + 2$ identity: $y_2 = x^2 + 2$ identity: $y_1 = x^2 + 2$ identity: $y_2 = x^2 + 2$ identity: $y_1 = x^2 + 2$ identity: $y_2 = x^2 + 2$ identity: $y_1 = x^2 + 2$ identity: $y_2 = x^2 + 2$ identity: $y_1 = x^2 + 2$ identity:

 $f(x) = \frac{1}{x^2}$, g(x) = x أو جد مساحة المنطقة المحددة بالمنحنيين x = 2 ومحور السينات.

SAMA

باستخدام التكامل المحدد أوجد حجم المجسم الناتج من دوران المنطقة المستوية دورة كاملة حول محور السينات والمحددة بنصف الدائرة $y = \sqrt{r^2 - x^2}$

باستخدام التكامل المحدد أو جد حجم المجسم الناتج من دوران المنطقة المستوية دورة كاملة حول محور السينات والمحددة باستخدام التكامل المحدد أو جد حجم المجسم الناتج من دوران المنطقة المستوية دورة كاملة حول محور السينات والمحددة باستخدام التكامل المحدد أو f(x) = r , $r \neq 0$: f

SAMA

أو جد حجم المجسم الناتج من دوران المنطقة المستوية دورة كاملة حول محور السينات $f(x) = x^2$, $g(x) = \sqrt{x} : g$

,age 28

أو جد حجم المجسم الناتج من دوران المنطقة المستوية دورة كاملة حول محور السينات $f(x) = rac{x^2}{2} + 1 \;\;,\;\; g(x) = rac{x}{2} + 2$

SAMA

أو جد حجم المجسم الناتج من دوران المنطقة دورة كاملة حول محور السينات والمحددة $y_1=x+3$, $y_2=x^2+1$

قلب الأم رياضيات سما مذكرات قلب الأم قلب الأم رياضيات سلما مذكرات قلب الأم

الاستاذ:وليد حسين 50522331

 $[0\,,6]$ في الفترة $f(x)=rac{1}{3}(3+2x)^{rac{3}{2}}:\ f$ في الفترة

SAMA

 $[0, \frac{1}{3}]$ في الفترة $f(x) = 5 + 2\sqrt{x^3}$. أو جد طول القوس من منحنى الدالة

Lo.W SAMA

 $A\left(\frac{-\pi}{4},\frac{5}{2}\right)$ ويمر بالنقطة f الذي ميله عند أي نقطة عليه (x,y) هو: (x,y) هو: الدالة أو جد معادلة منحنى

SAMA

 $\sqrt{5-4x}$ يساوي على منحنى الدالة f عند أي نقطة عليه $(x\,,\,y)$ يساوي على منحنى الدالة f عند أي نقطة $A(-5\,,3)$ يساوي عندما يمر بالنقطة وجد معادلة المنحنى عندما يمر بالنقطة و

 $_{\rm age}31$

إذا كان ميل العمودي على منحنى الدالة f عند أي نقطة عليه (x,y) هو 2x+5 فأو جد معادلة منحنى الدالة g(-2,3) الدالة f إذا كان يمر بالنقطة g(-2,3)

LOUU SAMA

y'-2xy=0 جي حل للمعادلة التفاضلية: $y=e^{x^2}$ جي أثبت أن الدالة:

 $\frac{dy}{dx} = \frac{2y}{x}$:حل المعادلة التفاضلية

SAMA

x=0 عند y=2 إذا كان y'=4y عند أو جد حلًا للمعادلة:

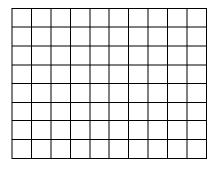
 $_{\text{Page}}33$

قلب الأم رياضيات سما مذكرات قلب الأم قلب الأم رياضيات سما مذكرات قلب الأم الأم رياضيات سما مذكرات قلب الأم

الاستاذ :وليد حسين 50522331

x=0 عند y=3 عند الحل الذي يحقق y=3 عند y=3 عند المعادلة

A(-3,4) , B(3,4) , B(3,4) , الذي رأسه نقطة الأصل ويمر بالنقطتين



قنب الأم رياضيات المام المام

الاستاذ :وليد حسين 50522331

أوجد البؤرة، والدليل، وخط تماثل القطع المكافئ. ارسم تخطيطًا للرسم البياني للقطع المكافئ.

 $y = \frac{x^2}{4}$: Italian

Louw SAMA

 $^{Page}35$

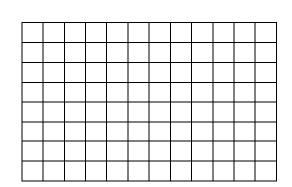
قلب الأم رياضيات المحالي المحالي المحالي الأم رياضيات المحالي المحالي

تصنع إحدى الشركات مصابيح أمامية للسيارات. إذا كان أحد المصابيح على شكل سطح مكافئ متولد من تدوير قطع مكافئ معادلته $y^2=12x$ ، فأين يجب وضع لمبة المصباح

SAMA

اكتب معادلة القطع الناقص الذي فيه:

رتين، F_1 هما البؤرتين، $V_1F_1 + V_1F_2 = 10$ هما البؤرتين، V_1 هما البؤرتين، $V_1F_1 + V_1F_2 = 10$ علمًا أنّ V_1 0، V_1 1، V_1 2، هما البؤرتين، علمًا أنّ V_1 3، V_2 4، هما البؤرتين،


قلب الأم رياضيات سما مذكرات قلب الأم قلب الأم رياضيات سلما مذكرات قلب الأم

الاستاذ :وليد حسين 50522331

إذا كانت: $\frac{x^2}{4} + \frac{y^2}{9} = 1$ معادلة قطع ناقص فأو جد:

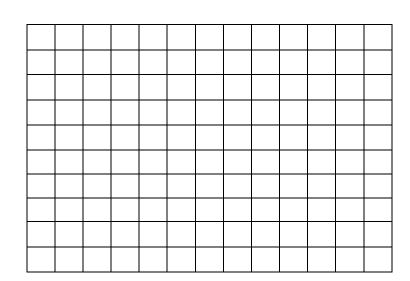
- a رأسي القطع وطرفي المحور الأصغر.
 - b البؤرتين.
 - معادلة دليلي القطع.
- طول كل من المحورين، ثم ارسم شكلًا تقريبيًا للقطع.

SAMA

 $x^2 + 4y^2 = 16$ الناقص الذي معادلته: $x^2 + 4y^2 = 16$

أو جد معادلة قطع ناقص مركزه (0,0) إذا كان محوره الأكبر ينطبق على المحور الصادي وطوله 16 cm والمسافة بين البؤرتين 10 cm.

, age 38


 $F_1 \left(-5 \, , 0
ight)$ أوجد معادلة القطع الزائد الذي إحدى بورتيه أوجد معادلة كل من خطيه المقاربين ورأساه $A_1 \left(-3 \, , 0
ight) , \, A_2 \left(\, 3 \, , 0
ight)$

SAMA

 $F_1(0,-\sqrt{5})$ وإحدى بؤرتيه ($\sqrt{5}$) أو جد معادلة القطع الزائد الذي مركزه ($\sqrt{5}$) وإحدى بؤرتيه ($\sqrt{5}$) ومعادلة أحد خطيه المقاربين y=2x

لتكن: $44 = 9x^2 - 16y^2 = 144$ معادلة قطع زائد، أو جد:

- a) رأسى القطع الزائد.
 - b البؤرتين.
- 🖸 معادلتي دليلي القطع.
- طول كل من المحورين.
- و معادلة كل من الخطين المقاربين ثم ارسم شكلًا تخطيطيًا للقطع.

الاستاذ :وليد حسين 50522331

أو جد معادلة القطع الزائد الذي مركزه (0,0) وأحد رأسيه (-4,0) ويمر بالنقطة (-5,-2).

حدد نوع القطع في كل مما يلي ثم أو جد معادلته.

- F(2,0) :وإحدى بؤرتيه $\left(e=rac{1}{2}
 ight)$ وإحدى بؤرتيه (a)
- x=1 اختلافه المركزي (e=2) ومعادلة أحد دليليه: \mathbf{b}

Lo.WU SAMA

أو جد الاختلاف المركزي لكل قطع مما يلي حيث معادلته:

$$24y^2 = 600 + 25x^2$$

LOUU SAMA

أو جد طول المحور الأكبر للقطع الناقص الذي اختلافه المركزي $\left(e=\frac{\sqrt{5}}{3}\right)$ وطول محوره الأصغر 4 وحدات.

SAMA

عند إلقاء قطعة نقود ثلاث مرات متتالية ، إذا كان المتغير العشوائي X يعبر عن " عدد الكتابات " فأوجد ما يلي :

- 1) فضاء العينة (S) و عدد عناصره (N(S) .
 - 2) مدى المتغير العشوائي X .
- 3) احتمال كل عنصر من عناصر مدى المتغير العشوائي X.
 - . X دالة التوزيع الاحتمالي f للمتغير العشوائي X

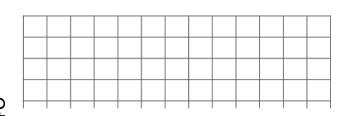
LOUU SAMA

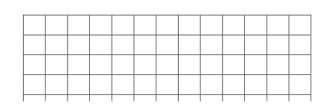
عند رمي حجر نرد مرة واحدة، إذا كان المتغير العشوائي X يعبّر عن: «مربع العدد الظاهر مطروحًا منه 1 عندما يكون العدد الظاهر أصغر من 4، و 1 – لغير ذلك». فأوجد:

- n(S) فضاء العينة S وعدد عناصر فضاء العينة (a
 - Xمدى المتغير العشوائي X
- Xاحتمال وقوع كل عنصر من عناصر مدى المتغير العشوائي X
 - Xدالة التوزيع الاحتمالي f للمتغير العشوائي \mathbf{d}

SAMA

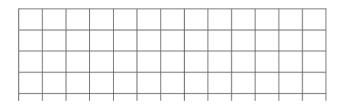
Xيبيّن الجدول التالي دالة التوزيع الاحتمالي للمتغير العشوائي متقطع


x	1	2	3	4	5
f(x)	0.2	0.1	0.3	0.1	0.3

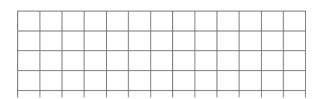

فأوجد:

- a) التوقع (µ).
- التباين (σ^2).
- (σ) الانحراف المعياري (σ) .

$$f(x) = \begin{cases} \frac{1}{3} : 0 \le x \le 3 \\ 0 : 0 \le x \le 3 \end{cases}$$
فيما عدا ذلك (a) فيما عدا ذلك (a) فيما عدا أدلك (a) أثبت أن (a) تتبع التوزيع الاحتمالي المنتظم (a) أو جد التوقع والتباين للدالة (a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c)


اذا كان X متغيرًا عشوائيًا متصلا ودالة كثافة الاحتمال له هي:

$$f(x) = \begin{cases} \frac{2}{9}x : 0 \le x \le 3 \\ 0 : \text{ ideal and a points} \end{cases}$$


1)
$$p(0 < X \le 3)$$

$$2)p(X \geq 2)$$

2)
$$p(X \ge 2)$$
 3) $P(X = 1)$

Lo.UU SAMA

X الجدول التالي يبيّن بعض قيم دالة التوزيع التراكمي F للمتغير العشوائي المتقطع

x	-1	3	5	7
F(x)	0.1	0.45	0.7	1

(a) $P(-1 \le X \le 5)$

(b) P(X > 3)

أو جد:

X يبيّن الجدول التالى دالة التوزيع الاحتمالي f للمتغير العشوائي المتقطع

x	2	3	4	5	6
f(x)	0.14	0.16	0.35	0.15	0.2

F(2) , F(3) , F(3.5) , F(4) , F(5) , F(6) , F(7) :F كمى التوزيع التراكمي ال

إذا كان z يتبع التوزيع الطبيعي المعياري للمتغير العشوائي X، فأوجد:

(a) $P(z \ge 1.52)$ (b) $P(1.4 \le z \le 2.6)$

الاستاذ :وليد حسين 50522331

SAMA $f(x) = -3x^{-4}$ هي مشتقة عكسية للدالة: $F(x) = x^{-3}$	1
$\int (x+1)^3 \sqrt{x^2+2x+3} dx = \frac{3}{8} \sqrt[3]{(x^2+2x+3)^4} + C$	2
$\int (2x^2 - 1)(2x^3 - 3x + 4)^5 dx = \frac{1}{18}(2x^3 - 3x + 4)^6 + C$	3
انت کانت: $F(x) = \int (3x^2 - 12x + 15) dx$ وان: گانت: $F(x) = \int (3x^2 - 12x + 15) dx$	4
$F(x) = x^3 + 6x^2 + 15x + 400$	
$(F'(x) = \sec x \tan x, F(0) = 4) \Longrightarrow F(x) = \sec x + 3$	5
$\int \frac{dx}{\sqrt{3x-2}} = 2\sqrt{3x-2} + C$	6
$\left(F'(x) = \sec^2 x, F\left(\frac{\pi}{4}\right) = -1\right) \Longrightarrow F(x) = \tan x + 2$	7
$f'(x) = 2xe^{2x}$: اذا کانت $f(x) = e^{x^2}$	8
$\int \frac{1}{3x+1} dx = \ln(3x+1) + C$	9
$\frac{dy}{dx} = 4x$ فإن: $y = 4^{x-2}$	10
$\int x e^{6x} dx = \frac{1}{6} x e^{6x} - \frac{1}{36} e^{6x} + C$	11
$\int x \sin(\pi x) dx = -\frac{x}{\pi} \cos(\pi x) + \frac{1}{\pi^2} \sin(\pi x) + C$	12
$\int x e^{6x} dx = \frac{1}{6} x e^{6x} - \frac{1}{36} e^{6x} + C$	13
$\int \frac{-6dx}{x^2 + 3x} = -2\ln x + 3 + 2\ln x + C$	14
$\int \frac{4dx}{(x+3)(x+7)} = \ln x+3 + \ln x+7 + C$	15

قلب الأم رياضيات سما مذكرات قلب الأم قلب الأم رياضيات سلما مذكرات قلب الأم

الاستاذ :وليد حسين 50522331

$f(x) = \frac{3}{x+1} - \frac{2}{2x-3}$ الدالة: $f(x) = \frac{4x-11}{2x^2-x-3}$ على صورة كسور جزئية هي:	16
$\int_{0}^{\frac{\pi}{2}} \sin^{2}x dx - \int_{\frac{\pi}{2}}^{0} \cos^{2}x dx = \frac{\pi}{2}$	17
$\int_{2}^{3} f(x) dx + \int_{3}^{5} f(x) dx - \int_{5}^{2} f(x) dx = 0$	18
$\int_{-1}^{1} (x)^3 dx = -\frac{1}{2}$	19
$\int_{-1}^{1} \frac{1}{\pi} \sqrt{1 - x^2} dx = 1$	20
مساحة المنطقة المحددة بمنحنى الدالة f ومحور السينات	21
المستقيمين $\int_a^b f(x) dx$ هي: $x = a$, $x = b$	
ين كان: $y = -5$, $y = -5$, $y = -5$, $y = -5$ إذا كان:	22
(a) $-\frac{x^2}{3} - \frac{14}{3}$	
(c) $3x^{\frac{1}{3}} - 2$ (d) $3x^{\frac{1}{3}}$	
$\int \left(\frac{x^2 - 4x + 4}{x - 2} + 2\right)^2 dx =$	23
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
(c) $\frac{x^2}{2} + 2x + C$ (d) $\frac{1}{3}x^3 + C$	
$\int x(x^2+2)^7 dx = \sum_{\text{SAMA}}$	24
(a) $\frac{1}{16}(x^2+2)^8+C$ (b) $\frac{1}{4}(x^2+2)^8+C$	
c $\frac{1}{12}(x^2+2)^6+C$ d $\frac{1}{3}(x^2+2)^6+C$	
ين $F(x)$ نيان: $F(x) = \frac{9}{8}$ ، $F(x) = \int (x+1)(2x^2+4x-1)dx$ ياذا كانت:	25
(a) $\frac{1}{8}(2x^2 + 4x - 1)^2 + \frac{5}{4}$ (b) $\frac{1}{8}(2x^2 + 4x - 1)^2 + 1$	
$ \frac{1}{4}(2x^2 + 4x - 1)^2 + 1 $	

$\int \frac{2 + \sqrt[3]{x^2}}{\sqrt{x}} dx = $	26
(a) $x^{\frac{1}{2}} + \frac{6}{7}x^{\frac{7}{6}} + C$ (b) $4x^{\frac{1}{2}} + \frac{6}{7}x^{\frac{7}{6}} + C$	
(c) $x^{\frac{1}{2}} + \frac{7}{6}x^{\frac{7}{6}} + C$ (d) $4x^{\frac{1}{2}} + \frac{7}{6}x^{\frac{7}{6}} + C$	
$\int \frac{x}{\sqrt{x+1}} dx =$	27
(a) $\frac{3}{2}\sqrt{(x+1)^3} - 2\sqrt{x+1} + C$ (b) $\frac{2}{3}\sqrt{(x+1)^3} - \frac{1}{2}\sqrt{x+1} + C$	
$ \frac{2}{3}\sqrt{(x+1)^3} - 2\sqrt{x+1} + C $	
$\frac{dy}{d\theta} = \sin\theta$, $y = -3$ إذا كانت $y = \sin\theta$ فإنّ y تساوي:	28
$(a) - \cos \theta$ $(b) 2 - \cos \theta$	
c $-2-\cos\theta$ d $4-\cos\theta$	
$\frac{dy}{dx}$ تساوي: $y = x^2 e^x - x e^x$	29
(a) $e^{x}(x^{2}+x-1)$ SAMA (b) $e^{x}(x^{2}-x)$	
(c) $2x e^x - e^x$ (d) $e^x(x^2 + 2x + 1)$	
$\int \sqrt[3]{\cot x} \csc^2 x dx =$	30
(a) $\frac{3}{4}\sqrt[3]{(\cot x)^4} + C$ (b) $-\frac{3}{4}\sqrt[3]{(\cot x)^4} + C$	
c $-\frac{3}{4}\sqrt[4]{(\cot x)^3} + C$ d $3\sqrt[3]{(\cot x)^4} + C$	
$\int \frac{\csc^2 x}{\sqrt[3]{2 + \cot x}} dx =$	31
(a) $\frac{3}{2}(2+\cot x)^{\frac{2}{3}}+C$ (b) $-\frac{3}{2}(2+\cot x)^{\frac{2}{3}}+C$	
c $-2\sqrt{2+\cot x} + C$ d $\frac{4}{3}(2+\cot x)^{\frac{4}{3}} + C$	
الصورة العامة للمشتقة العكسية للدالة f حيث $f(x) = 8 + \csc x \cot x$ هي:	32
(a) $F(x) = 8x + \csc x + C$ (b) $F(x) = 8x - \cot x + C$	
$ (c) F(x) = 8x - \csc x + C $ $ (d) F(x) = 8x + \cot x + C $	

	ا إذا كانت $y = (\ln x)^2$ نيان $\frac{dy}{dx}$ تساوي:
	$\frac{2 \text{m} x}{x}$
	$\frac{2\ln^2 x}{x}$
$\int x^2 \ln(x) dx =$	34
2	$\frac{1}{3}x^3\ln(x) - \frac{x^3}{9} + C$
(c) $\frac{1}{3}x^3 \ln(x) + \frac{x^3}{9} + C$ (d)	$-\frac{1}{3}x^3\ln(x) - \frac{x^3}{9} + C$
ري:	اذا كانت $\frac{dy}{dx}$ ، فإنّ $y = \ln(\frac{10}{x})$ تساو
	$\frac{10}{x}$
\bigcirc $\frac{1}{x}$	$-\frac{1}{x}$
$\int \frac{e^x + e^{-x}}{2} dx =$	36
$ \begin{array}{c} 3 & 2 \\ \hline \text{a} & \frac{e^x - e^{-x}}{2} + C \end{array} $	
$\bigcirc \frac{e^{-x}-e^x}{2}+C$	(d) $\frac{e^{2x} - e^{-2x}}{2} + C$
$\int \frac{e^x}{e^x - 4} dx =$	37
$\int v du = \int (3x-1)$	$e^{3x+2} dx = uv - \int v du$ إذا كان
(a) $-\frac{1}{3}e^{3x+2} + C$	(b) $-e^{3x+2} + C$
$\frac{1}{3}e^{3x+2} + C$	

$uv = \int (2x+1) \ln x dx = uv - \int v du$ فإن	39
$\frac{2x+1}{2}\ln x$ SAMA $\frac{1}{2}\ln x$	
الدالة النسبية: $\frac{x}{x^2-4}$ على صورة كسور جزئية هي $f(x)$ تساوي:	40
(a) $\frac{1}{x-2} + \frac{1}{x+2}$ (b) $\frac{1}{2(x-2)} + \frac{1}{2(x+2)}$	
c $\frac{1}{x-2} - \frac{1}{x+2}$ d $\frac{1}{2(x-2)} - \frac{1}{2(x+2)}$	
$\int \frac{3x^2 + 2x}{x^2 - 4} dx =$	41
(a) $4\ln x-2 -2\ln x+2 +C$ SAMA (b) $3x+2\ln x-2 -2\ln x-2 +C$	
$\int_{-1}^{3} (2f(x) + 3g(x) + 1)dx$ فإن $\int_{-1}^{3} f(x)dx = 4$, $\int_{3}^{-1} g(x)dx = 2$ إذا كان.	42
(a) 18 (b) -6 (c) 6 (d) 12	
: لتكن a فإن $dx>0$ فإن $f(x)=x^2+5$ لكل قيم $f(x)=x^2+5$ لكل تتكن	43
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\int_{-1}^{1} (1 - x) dx =$ SAMA	44
(a) 1 (b) -1 (c) 0 (d) $\frac{1}{2}$	
$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (\sin x + \cos x) dx =$	45
(a) 4 (b) 2 (c) 0 (d) π	
مساحة المنطقة المحددة بمنحنى الدالة f ومحور السينات	46
$\int_{a}^{b} f(x) dx = h \cdot x = a \cdot x = h \cdot x = a$	

إذا كانت: $f(x) \leq 0$ $\forall x \in [a,b]$ فإن مساحة المنطقة المحددة	47
$\int_{b}^{a}f(x)dx$ بمنحنى الدالة f ومحور السينات في $[a,b]$ هي:	
$f(x)=4-x^2: f$ مساحة المحددة بمنحنى الدالة	48
$2\int_{0}^{2}f(x)dx$.هي: $[-2,2]$ هي	
حجم المجسم الناتج من دوران دورة كاملة حول محور السينات للمنطقة المحددة بمنحني	49
$V=\pi\int_{0}^{4}4xdx-\pi\int_{0}^{1}4xdx$: هو: $f(x)=2\sqrt{x}:f$ الدالة	
$[0,1]$ في الفترة $f(x) = \frac{1}{3}(1+4x)^{\frac{3}{2}}$ في الفترة	50
هو $L=rac{2}{3}$ وحدة طول.	
A(1,1) منحنى الدالة f الذي ميله عند أي نقطة عليه (x,y) هو: $x+x$ ويمر بالنقطة	51
SAMA $f(x) = -\frac{2}{3}x\sqrt{x} + x^2 + \frac{2}{3}$	
المعادلة التفاضلية التالية: $y'(y') + y = 0 + (y')^2 + y = 0$ من الرتبة الثالثة والدرجة الأولى.	52
$y=2e^{-x}$ اِذَا كَانَ $y=0$ عند $y=0$ عند $y=1$	53
$y = \frac{1}{4}e^{-2x} + \frac{1}{4}$ اِذَا كَانَ $y = 0$ عند $y = 0$ و $y = 0$ و ازدا كان $y = 0$	54
المعادلة التفاضلية التالية: $3 = \frac{(2y'' + x)^2}{xy}$ من:	55
(a) الرتبة الأولى والدرجة الثانية.	
(a) الرتبة الأولى والدرجة الثانية. (b) الرتبة الثانية والدرجة الأولى. (c) الرتبة الثانية والدرجة الأولى. (d) الرتبة الثانية والدرجة الثانية.	
حل المعادلة التفاضلية $2x=2$ الذي يحقق $y=-2$ عندما $y=-2$ هو:	56
(a) $y = x^2 + 3$ (b) $y = x^2 - 3$	
$y = \frac{x^2}{2} - 3$ SAMA $y = \frac{x^2}{2} + 3$	
$y'' = 2x^2 + 3x$ إذا كان $y'' = 2x^2 + 3x$	57
(a) $y = \frac{2x^3}{3} + \frac{3x^2}{2} + c$ (b) $y = \frac{2x^3}{3} + \frac{3x^2}{2}$	
© $y = \frac{1}{6}x^4 + \frac{1}{2}x^3 + c_1x + c_2$ SÄMA	

سلما	حل المعادلة التفاضلية $y = 1 + y + y$ الذي يحقق $y = 3$ عند $y = 3$ هو:	58

(a) $y = 2e^{\frac{5}{2}}$

(b) $y = \frac{2}{5^{\frac{5}{2}}}$

c $y = 2e^{\left(-\frac{1}{2}x + \frac{5}{2}\right)} + 1$

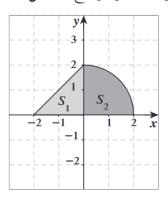
- **d** $y = 2e^{\left(-\frac{1}{2}x \frac{5}{2}\right)} + 1$
- مساحة المنطقة المحددة بمنحنى الدالة $f(x) = \sqrt{9-x^2}$ ومحور السينات هي:
- (a) 9π units²

(b) $6\pi \text{ units}^2$

(c) 3π units²

- إذا كان بيان الدالة f يمثله $\overline{CB} \cup \overline{BD}$ كما هو موضح بالشكل فإن مساحة المنطقة المحددة بمنحنى الدالة ومحور السينات والمستقيمين x = -1 , x = 3 هي:
- (a) 3 units²
- (b) 4 units^2

سلما


SAMA

- (c) 2 units²
- (\mathbf{d}) 5 units²

- حجم المجسم الناتج من دوران دورة كاملة حول محور السينات للمنطقة المحددة بمنحني الدالة f(x)=3 ومحور السينات في الفترة f(x)=3 بالوحدات المكعبة هو:
- (a) 6π
- **(b)** 18

SAMA

- (c) 18 π
- المنطقة المظللة $S_1 \cup S_2 \cup S_1 \cup S_2$ منطقة مثلثة، S_2 منطقة ربع دائرة كما هو موضح بالشكل.

حجم المجسم الناتج من دوران دورة كاملة حول محور السينات للمنطقة δ بالوحدات المكعبة يساوى:

- $(a) \frac{40}{3}\pi$
- (b) $4 + 2\pi$
- $(c) \frac{16}{3}\pi$
- حجم المجسم الناتج من دوران دورة كاملة حول محور السينات للمنطقة المحددة بمنحنى الدالة بالوحدات المكعبة هو: $v = -\sqrt{4-x^2}$
- (\mathbf{a})
- **(b)** 6π
- الللما
- $\left(c\right) \frac{16}{3}\pi$

	ة [-2,3] هو:	الة $f: \frac{1}{3}: f$ في الفترة	طول القوس من منحني الد	64
a 7 units	b 6 units	c 5 units	d 1 unit	
ِ بالنقطة (2,3) هي	طة (x,y) هو: x+3 ويمر	يل العمودي عليه عند أي نق	_ معادلة منحني الدالة الذي م	65
			y تساوي:	
(a) $-\frac{x^2}{2} + 3x - 4$	b $\ln 3-x +3$	$\bigcirc \qquad -\frac{x^2}{2} + 3x + 4$	d $3 - \ln 3 - x $	
	نرة [0,2] هو:	لة $f(x)=x-3$ في الفت	_ طول القوس من منحني الدا	66
\bigcirc a $\sqrt{2}$ units	\bigcirc b $2\sqrt{2}$ units	\bigcirc 3 $\sqrt{2}$ units	$\frac{\sqrt{2}}{2}$ units	
A(4,-2 هي:	ويمر بالنقطة ($2x-3\sqrt{x}$:	يله عند أي نقطة (x,y) هو	معادلة منحنى الدالة الذي م	67
(a) $x^2 + 2\sqrt{x^3} - 2$	(b) $x^2 - 2\sqrt{x^3}$	$\bigcirc x^2 - 2\sqrt{x^3} - 2$		

who liedes laced who same who same

$\left(0, \frac{-3}{2}\right)$ هي معادلة قطع مكافئ، بؤرته $y^2 = \frac{1}{2}x$	68
$x^2 = 8y$. هي: $x = -2$ معادلة القطع المكافئ الذي رأسه $(0,0)$ ودليله	69
في القطع الناقص الذي معادلته. $\frac{x^2}{36} + \frac{y^2}{36}$ ، طول المحور الأصغر يساوي 8	70
المحور الأكبر للقطع الناقص الذي معادلته $25x^2 + 9y^2 = 225$ يساوي 10 units طول المحور الأكبر	71
$\frac{x^2}{7^2} + \frac{y^2}{4^2} = 1$ النقطة ($\sqrt{33}$,0) هي إحدى بؤرتي القطع الناقص الذي معادلته.	72
الخطّان المقاربان للقطع الزائد الذي معادلته $x^2 - y^2 = 12$ هما متعامدان.	73
هي معادلة قطع زائد. $x^2 - y^2 = 4$	74
$\frac{x^2}{25} - y^2 = 1$ نقطتا طرفي المحور المرافق للقطع الزائد الذي معادلته	75
المان $B_1(1,0)$, $B_2(-1,0)$.	
$y = \frac{1}{2}x$ ، $y = \frac{-1}{2}x$ هما: $\frac{x^2}{36} - \frac{y^2}{9} = 1$ معادلتا المقاربين للقطع الزائد	76
اذا كانت $e < 1$ ، فإن القطع هو قطع ناقص. والمحافظة المحافظة المح	77
المحور القاطع للقطع الزائد $1 = \frac{x^2}{10} - \frac{x^2}{10}$ ينطبق على محور الصادات.	78 اللاما SAMA

- المعادلة التي تمثل قطعًا مكافئًا رأسه (0,0) ويمر بالنقطتين (5,2), B(-5,-2) هي:

- (a) $y^2 = -\frac{4}{5}x$ (b) $x^2 = -\frac{4}{5}y$ (c) $y^2 = \frac{4}{5}x$ (d) $x^2 = \frac{4}{5}y$

80

81

82

85

- بؤرة القطع المكافئ في الشكل المقابل هي:

- (c) $(0, \frac{1}{12})$
- $\left(\mathbf{d}\right)\left(\frac{1}{12},0\right)$
- النقطة المشتركة بين كل القطوع المكافئة التي هي على الصورة $x^2 = 4py$ هي:
- (a) (1,1)

- (b) (1,0) (c) (0,1) (d) (0,0)
- (5, 3)

معادلة القطع المكافئ للبيان التالي هي:

- (a) $x^2 = -\frac{25}{3}y$ (b) $y^2 = \frac{9}{5}x$
- (c) $x^2 = \frac{25}{2}y$
- $(\mathbf{d}) y^2 = \frac{5}{9}x$
- $AF_1 + AF_2$ النقطة A(-10,0) تنتمي إلى القطع الناقص الذي معادلته $AF_1 + AF_2$ مجموع المسافتين A(-10,0)ى: مما البؤرتان يساوى: F_1 , F_2 شيا
 - (a) 10 units
- (b) 12 units

(c) 14 units

- (d) 20 units $\frac{x^2}{100} + \frac{y^2}{64} = 1$ يساوي:

(a) 12 units

(b) $2\sqrt{41}$ units

- d 20 units
- معادلة القطع الناقص الذي بؤرتاه (7,0) والنقطتان الطرفيتان لمحوره الأصغر $(6\pm,0)$ هي:
- $\frac{x^2}{85} + \frac{y^2}{36} = 1$

- (b) $\frac{x^2}{36} + \frac{y^2}{85} = 1$
- $\frac{x^2}{49} + \frac{y^2}{36} = 1$

 $\frac{x^2}{85} + \frac{y^2}{49} = 1$

لأيّ قطع ناقص يكون: SAMA لأيّ قطع ناقص يكون:	86
(a) $a > c$ (b) $a < c$	
SAMA $\frac{x^2}{36} + \frac{y^2}{25} = 1$ Illustration is a second substituting the same of the	87
(a) $\frac{\sqrt{11}}{6}$ (b) $\frac{\sqrt{11}}{5}$ (c) $\frac{36}{25}$ (d) $\frac{25}{36}$	
وذا كانت معادلة أحد المقاربين $y = \frac{-7}{5}x$ والاختلاف المركزي $e = \frac{\sqrt{74}}{5}$ ومعادلة القطع الزائد هي:	88
(a) $\frac{y^2}{7} - \frac{x^2}{5} = 1$ (b) $\frac{x^2}{7} - \frac{y^2}{5} = 1$ (c) $\frac{x^2}{49} - \frac{y^2}{25} = 1$ (d) $\frac{x^2}{25} - \frac{y^2}{49} = 1$	
دالة التوزيع التراكمي F للمتغير العشوائي المتقطع عند القيمة a هي احتمال وقوع المتغير العشوائي X بحيث يكون X أصغر من أو يساوي a .	89
التباين هو القيمة التي تتجمع حولها القيم الممكنة للمتغير العشوائي المتقطع.	90
لدالة توزيع تراكمي F للمتغير العشوائي X يكون:	91
$P(X < a) = 1 - F(a)$ قيمة X التي تجعل التوقع μ للمتغير العشوائي X يساوي 1 لدالة التوزيع الاحتمالي μ	92
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
n(S)=6 عند إلقاء قطعة نقود ثلاث مرات متتالية فإن	93
عدد أحرف كلمات كتاب هو متغير عشوائي متصل.	94
من خواص التوزيع الطبيعي أنه متماثل حول $x = \mu$.	95

SAMA

 $_{\text{Page}}58$

قلب الأم رياضيات المام المام الأم الأم الأم المام الم

الاستاذ :وليد حسين 50522331

Low SAMA	إذا كانت الدالة f معرفة كالتالي:	96
fفإن الدالة f هي دالة كثافة احتمال.	$f(x) = \begin{cases} \frac{1}{2} : 0 \le x \le 1 \end{cases}$	
	في ما عدا ذلك : 0	
ي X هي: 3 على الله ع	إذا كانت دالة التوزيع الاحتمالي f للمتغير العشوائي	97
f(x) = K = 2K = 2K	فإن قيمة K تساوي: AMA	
(a) 0.5 (b) 0.2	© 1	
ردتمالي f وكان التوقع $\int x^2 f(x) = 4.25$ ، $0.5 = 5$		98
(a) 4 (b) 2	فإن الانحراف المعياري هو: (c) 3.75 (d) 1	
	ا (ك عشوائيًّا متقطعًا دالة توزيع الاحتمال X متغيرًا عشوائيًّا متقطعًا دالة توزيع الاحتمال	99
لي رهي:		
للالما	f(x) = 0.25 = 0.50 = 0.25	
SAMA	فإن التوقع له يساوي:	
(a) 1 (b) 1.25	© 1.5 d 0.5	
ئي المتقطع X هي:	إذا كانت دالة التوزيع الاحتمالي f للمتغير العشوائ	100
Law	x 0 1 2	
SAMA	$f(x) \qquad \frac{1}{3} \qquad \frac{5}{9} \qquad \frac{1}{9}$	
	فإن التوقع μ للمتغير العشوائي X يساوي:	
(a) 1 (b) $\frac{2}{3}$	$\bigcirc \frac{7}{9}$	
P(X=1) = 0.3 , $P(X=-1) = 0.6$. 0.6 و کان: $P(X=1) = 0.6$	إذا كان X متغيرًا عشوائيًّا متقطعًا يأخذ القيم 1.5 , ا	101
	فإن $P(X>0)$ يساوي:	
(a) 0.6 (b) 0.9	(c) 0.4 (d) 0.7	

 $_{\text{Page}}59$

	إذا كان X متغيّرًا عشوائيًّا متصلًا ودالة كثافة الاحتمال له هي:						
	يساوي:	P(X=1) فَإِنْ	$f(x) = \begin{cases} \frac{1}{2}x : & 0 \le x \le 2\\ 0 : & \text{id} \end{cases}$				
\bigcirc a \bigcirc 1	b 0	c 1	ليس أيًّا مما سبق				
	يساوي :	$P(0 \le \underline{Z} \le 2.35)$	إذا كان 2 يتبع التوزيع الطبيعي فإن :	103			

قلب الأم رياضيات بيهما مذكرات قلب الأم قلب الأم رياضيات ممما مذكرات قلب الأم

(c) 0.4906

الاستاذ :وليد حسين 50522331

(b) 0.5

SAMA

(d) 0.218

القوانين

إذا كان X متغيرا عشوائيا متقطعا له دالة التوزيع الاحتمالي f فان التوقع و التباين للمتغير العشوائي يعطى بالصيغة:

SAMA

(a)

0.9906

 $\mu = \sum (x_i f(x_i))$ $\sigma^2 = \sum ((x_i)^2 f(x_i)) - \mu^2$ $\sigma = \sqrt{\sigma^2}$

التوقع : التباين :

الانحراف المعياري:

خواص دالة التوزيع التراكمي للمتغير العشوائي X

(1)
$$P(X > a) = 1 - P(X \le a) = 1 - F(a)$$

(2)
$$P(a < X \le b) = F(b) - F(a)$$

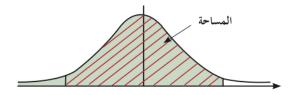
دالة كثافة الاحتمال للتوزيع الاحتمالي المنتظم على [a,b] هي:

$$f(x) = egin{cases} rac{1}{b-a} & : a \le x \le b \ 0 & : a \le x \le b \end{cases}$$
فيما عدا ذلك :

 $\mu = \frac{a+b}{2}$ $\sigma^2 = \frac{(b-a)^2}{12}$

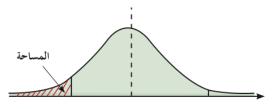
التوقع (الوسط) للتوزيع الاحتمالي المنتظم هو:

التباين للتوزيع الاحتمالي المنتظم هو:



جدول التوزيع الطبيعي المعياري (٦) لحساب قيم المساحات من اليسار

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.50000	0.50399	0.50798	0.51197	0.51595	0.51994	0.52392	0.52790	0.53188	0.53586
0.1	0.53983	0.54380	0.54776	0.55172	0.55567	0.55962	0.56356	0.56749	0.57142	0.57535
0.2	0.57926	0.58317	0.58706	0.59095	0.59483	0.59871	0.60257	0.60642	0.61026	0.61409
0.3	0.61791	0.62172	0.62552	0.62930	0.63307	0.63683	0.64058	0.64431	0.64803	0.65173
0.4	0.65542	0.65910	0.66276	0.66640	0.67003	0.67364	0.67724	0.68082	0.68439	0.68793
0.5	0.69146	0.69497	0.69847	0.70194	0.70540	0.70884	0.71226	0.71566	0.71904	0.72240
0.6	0.72575	0.72907	0.73237	0.73565	0.73891	0.74215	0.74537	0.74857	0.75175	0.75490
0.7	0.75804	0.76115	0.76424	0.76730	0.77035	0.77337	0.77637	0.77935	0.78230	0.78524
0.8	0.78814	0.79103	0.79389	0.79673	0.79955	0.80234	0.80511	0.80785	0.81057	0.81327
0.9	0.81594	0.81859	0.82121	0.82381	0.82639	0.82894	0.83147	0.83398	0.83646	0.83891
1.0	0.84134	0.84375	0.84614	0.84849	0.85083	0.85314	0.85543	0.85769	0.85993	0.86214
1.1	0.86433	0.86650	0.86864	0.87076	0.87286	0.87493	0.87698	0.87900	0.88100	0.88298
1.2	0.88493	0.88686	0.88877	0.89065	0.89251	0.89435	0.89617	0.89796	0.89973	0.90147
1.3	0.90320	0.90490	0.90658	0.90824	0.90988	0.91149	0.91309	0.91466	0.91621	0.91774
1.4	0.91924	0.92073	0.92220	0.92364	0.92507	0.92647	0.92785	0.92922	0.93056	0.93189
1.5	0.93319	0.93448	0.93574	0.93699	0.93822	0.93943	0.94062	0.94179	0.94295	0.94408
1.6	0.94520	0.94630	0.94738	0.94845	0.94950	0.95053	0.95154	0.95254	0.95352	0.95449
1.7	0.95543	0.95637	0.95728	0.95818	0.95907	0.95994	0.96080	0.96164	0.96246	0.96327
1.8	0.96407	0.96485	0.96562	0.96638	0.96712	0.96784	0.96856	0.96926	0.96995	0.97062
1.9	0.97128	0.97193	0.97257	0.97320	0.97381	0.97441	0.97500	0.97558	0.97615	0.97670
2.0	0.97725	0.97778	0.97831	0.97882	0.97932	0.97982	0.98030	0.98077	0.98124	0.98169
2.1	0.98214	0.98257	0.98300	0.98341	0.98382	0.98422	0.98461	0.98500	0.98537	0.98574
2.2	0.98610	0.98645	0.98679	0.98713	0.98745	0.98778	0.98809	0.98840	0.98870	0.98899
2.3	0.98928	0.98956	0.98983	0.99010	0.99036	0.99061	0.99086	0.99111	0.99134	0.99158
2.4	0.99180	0.99202	0.99224	0.99245	0.99266	0.99286	0.99305	0.99324	0.99343	0.99361
2.5	0.99379	0.99396	0.99413	0.99430	0.99446	0.99461	0.99477	0.99492	0.99506	0.99520
2.6	0.99534	0.99547	0.99560	0.99573	0.99585	0.99598	0.99609	0.99621	0.99632	0.99643
2.7	0.99653	0.99664	0.99674	0.99683	0.99693	0.99702	0.99711	0.99720	0.99728	0.99736
2.8	0.99744	0.99752	0.99760	0.99767	0.99774	0.99781	0.99788	0.99795	0.99801	0.99807
2.9	0.99813	0.99819	0.99825	0.99831	0.99836	0.99841	0.99846	0.99851	0.99856	0.99861
3.0	0.99865	0.99869	0.99874	0.99878	0.99882	0.99886	0.99889	0.99893	0.99896	0.99900
3.1	0.99903	0.99906	0.99910	0.99913	0.99916	0.99918	0.99921	0.99924	0.99926	0.99929
3.2	0.99931	0.99934	0.99936	0.99938	0.99940	0.99942	0.99944	0.99946	0.99948	0.99950
3.3	0.99952	0.99953	0.99955	0.99957	0.99958	0.99960	0.99961	0.99962	0.99964	0.99965
3.4	0.99966	0.99968	0.99969	0.99970	0.99971	0.99972	0.99973	0.99974	0.99975	0.99976
3.5	0.99977	0.99978	0.99978	0.99979	0.99980	0.99981	0.99981	0.99982	0.99983	0.99983
3.6	0.99984	0.99985	0.99985	0.99986	0.99986	0.99987	0.99987	0.99988	0.99988	0.99989
3.7	0.99989	0.99990	0.99990	0.99990	0.99991	0.99991	0.99992	0.99992	0.99992	0.99992
3.8	0.99993	0.99993	0.99993	0.99994	0.99994	0.99994	0.99994	0.99995	0.99995	0.99995
3.9	0.99995	0.99995	0.99996	0.99996	0.99996	0.99996	0.99996	0.99996	0.99997	0.99997


 $_{\text{Page}}61$

جدول التوزيع الطبيعي المعياري (٦) لحساب قيم المساحات من اليسار

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
-3.9	0.00005	0.00005	0.00004	0.00004	0.00004	0.00004	0.00004	0.00004	0.00003	0.00003
-3.8	0.00007	0.00007	0.00007	0.00006	0.00006	0.00006	0.00006	0.00005	0.00005	0.00005
-3.7	0.00011	0.00010	0.00010	0.00010	0.00009	0.00009	0.00008	0.00008	0.00008	0.00008
-3.6	0.00016	0.00015	0.00015	0.00014	0.00014	0.00013	0.00013	0.00012	0.00012	0.00011
-3.5	0.00023	0.00022	0.00022	0.00021	0.00020	0.00019	0.00019	0.00018	0.00017	0.00017
-3.4	0.00034	0.00032	0.00031	0.00030	0.00029	0.00028	0.00027	0.00026	0.00025	0.00024
-3.3	0.00048	0.00047	0.00045	0.00043	0.00042	0.00040	0.00039	0.00038	0.00036	0.00035
-3.2	0.00069	0.00066	0.00064	0.00062	0.00060	0.00058	0.00056	0.00054	0.00052	0.00050
-3.1	0.00097	0.00094	0.00090	0.00087	0.00084	0.00082	0.00079	0.00076	0.00074	0.00071
-3.0	0.00135	0.00131	0.00126	0.00122	0.00118	0.00114	0.00111	0.00107	0.00104	0.00100
-2.9	0.00187	0.00181	0.00175	0.00169	0.00164	0.00159	0.00154	0.00149	0.00144	0.00139
-2.8	0.00256	0.00248	0.00240	0.00233	0.00226	0.00219	0.00212	0.00205	0.00199	0.00193
-2.7	0.00347	0.00336	0.00326	0.00317	0.00307	0.00298	0.00289	0.00280	0.00272	0.00264
-2.6	0.00466	0.00453	0.00440	0.00427	0.00415	0.00402	0.00391	0.00379	0.00368	0.00357
-2.5	0.00621	0.00604	0.00587	0.00570	0.00554	0.00539	0.00523	0.00508	0.00494	0.00480
-2.4	0.00820	0.00798	0.00776	0.00755	0.00734	0.00714	0.00695	0.00676	0.00657	0.00639
-2.3	0.01072	0.01044	0.01017	0.00990	0.00964	0.00939	0.00914	0.00889	0.00866	0.00842
-2.2	0.01390	0.01355	0.01321	0.01287	0.01255	0.01222	0.01191	0.01160	0.01130	0.01101
-2.1	0.01786	0.01743	0.01700	0.01659	0.01618	0.01578	0.01539	0.01500	0.01463	0.01426
-2.0	0.02275	0.02222	0.02169	0.02118	0.02068	0.02018	0.01970	0.01923	0.01876	0.01831
-1.9	0.02872	0.02807	0.02743	0.02680	0.02619	0.02559	0.02500	0.02442	0.02385	0.02330
-1.8	0.03593	0.03515	0.03438	0.03362	0.03288	0.03216	0.03144	0.03074	0.03005	0.02938
-1.7	0.04457	0.04363	0.04272	0.04182	0.04093	0.04006	0.03920	0.03836	0.03754	0.03673
-1.6	0.05480	0.05370	0.05262	0.05155	0.05050	0.04947	0.04846	0.04746	0.04648	0.04551
-1.5	0.06681	0.06552	0.06426	0.06301	0.06178	0.06057	0.05938	0.05821	0.05705	0.05592
-1.4	0.08076	0.07927	0.07780	0.07636	0.07493	0.07353	0.07215	0.07078	0.06944	0.06811
-1.3	0.09680	0.09510	0.09342	0.09176	0.09012	0.08851	0.08691	0.08534	0.08379	0.08226
-1.2	0.11507	0.11314	0.11123	0.10935	0.10749	0.10565	0.10383	0.10204	0.10027	0.09853
-1.1	0.13567	0.13350	0.13136	0.12924	0.12714	0.12507	0.12302	0.12100	0.11900	0.11702
-1.0	0.15866	0.15625	0.15386	0.15151	0.14917	0.14686	0.14457	0.14231	0.14007	0.13786
-0.9	0.18406	0.18141	0.17879	0.17619	0.17361	0.17106	0.16853	0.16602	0.16354	0.16109
-0.8	0.21186	0.20897	0.20611	0.20327	0.20045	0.19766	0.19489	0.19215	0.18943	0.18673
-0.7	0.24196	0.23885	0.23576	0.23270	0.22965	0.22663	0.22363	0.22065	0.21770	0.21476
-0.6	0.27425	0.27093	0.26763	0.26435	0.26109	0.25785	0.25463	0.25143	0.24825	0.24510
-0.5	0.30854	0.30503	0.30153	0.29806	0.29460	0.29116	0.28774	0.28434	0.28096	0.27760
-0.4	0.34458	0.34090	0.33724	0.33360	0.32997	0.32636	0.32276	0.31918	0.31561	0.31207
-0.3	0.38209	0.37828	0.37448	0.37070	0.36693	0.36317	0.35942	0.35569	0.35197	0.34827
-0.2	0.42074	0.41683	0.41294	0.40905	0.40517	0.40129	0.39743	0.39358	0.38974	0.38591
-0.1	0.46017	0.45620	0.45224	0.44828	0.44433	0.44038	0.43644	0.43251	0.42858	0.42465
-0.0	0.50000	0.49601	0.49202	0.48803	0.48405	0.48006	0.47608	0.47210	0.46812	0.46414

