الرابطة بای π	الرابطة سيجما σ	وجه المقارنة
		نوع التداخل
		طول الرابطة وقوتها
		محور التداخل
		نوع التفاعلات الكيميائية

C ₂ H ₄	NH ₃	CO ₂	
			عدد الروابط σ
			عدد الروابط π

مراجعة تداخل الأفلاك :

1 – الروابط سيجما (δ) :	
🗖 تنتج عن التداخل المحوري لفلكي ذرتين .	🗖 تنتج عن التداخل الجانبي لفلكي ذرتين .
π أضعف من الروابط باي (π) .	□ يمكن أن تكون ثنائية أو ثلاثية .
2 – الرابطة بين ذرتي الأكسجين في الجزيء (2	: (0
. (δ) تساهمية أحادية من النوع سيجما	. (δ) تساهمية ثنائية من النوع سيجما
$(\pi$) وباي (δ) وباي النوع سيجما (δ)	\cdot (π) تساهمية ثنائية من النوع باي \Box
3 – الروابط في الصيغة البنائية التالية(H – 3	:(H - C≡
$(\pi$ أربع روابط سيجما δ) و رابطة باي (π	. (δ) و رابطة سيجما (π) و ثلاث روابط باي
. (δ) خمس روابط سیجما \Box	$(\pi$) و رابطتین بای (δ) .
4 – الرابطة التساهمية الثلاثية تتكون من :	
\square ثلاث روابط سيجما δ) .	π ثلاث روابط باي π .
. $(\pi$) رابطة سيجما (δ) و رابطتين باي \Box	\square رابطتین بای (π) و رابطة سیجما (δ) .
5 – يتداخل الفلكان جنباً إلى جنب عندما يكون	حورهما :
🗖 متعامدین .	🗖 متوازيين .
🗖 متقابلین رأساً لرأس .	🗖 متقابلين رأساً إلى جنب .
6 — أحد الجزيئات التالية يحتوي على رابطة تسا	مية ثلاثية هو جزيء:
$Br_2 \square $ $O_2 \square $	N_2 \square CI_2 \square
7 – من خواص الرابطة سيجما (δ) :	
. $(\pi$ أضعف من الرابطة باي π	 یکون محور تداخل الفلکین هو محور التناظر .
🗖 تكون أقوى كلما كان التداخل بين الأفلاك أقل.	 □ لا تعتمد على المسافة بين الذرتين المترابطتين .

مراجعة الوحدة الأولى :

1-كم عدد الروابط سيجما و باي في المركبات التالية :

2- نوع التهجين في ذرة الكربون ((<mark>الحمراء</mark>)) فيما سبق

3-الأفلاك المتداخلة لتكوين الرابطة C – H في الجزيء 2H₂C = CH₂

$$Sp^2 - S$$

$$Sp^2 - S$$
 $p - p$ $Sp^2 - Sp^2$ $S - Sp$

4-الأفلاك المتداخلة لتكوين الرابطة C – C في الجزيء C – C و 4-الأفلاك المتداخلة لتكوين الرابطة

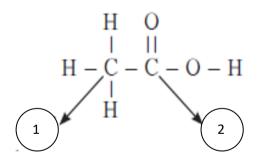
ەن نوع :

$$Sp^2 - S$$

$$p - p$$

$$Sp^2 - S$$
 $p - p$ $Sp^2 - Sp^2$ $S - Sp$

$$S - Sp$$


مراجعة التهجين :

۱− في الهركبيل ۲۰۰	Cn_2Cn_3 , $Cn_3Cn=C$	وهاع جمتع العبارات اللالية	غير صحيحه غدا :
🗖 عدد الروابط سيجما ف	في المركبين متساو.	المركبان ا	هما نفس عدد الروابط باي.
🗖 التهجين في جميع ذ	رات الكربون في المركبين	المركب $_2$ المركب $_2$	CH ₃ CH=Cl يتفاعل تفاعلات إضافية
2– عدد الأفلاك المهد	جنة التي تنتج عن تھ	جين فلك (s) مع فلكين	(p) يساوي :
2 🗖	4 🗆	3 🗖	1 🗖
3– إذا كان التهجين ه	ن النوع (sp3) فإن ا	لشكل الهندسي الذي تأذ	ذه الأفلاك المهجنة هو :
🗖 رباعي السطوح .	🗖 مكعب مركزي .	🗖 مثلث مستوي .	🗖 خطي .
4– إذا كان التهجين م	ن النوع (sp3) فإن ا	لزوايا بين الافلاك المهجنة	تساوي :
109.5° □	180° □	120° □	90° □
5- إذا كان التهجين م	ن النوع (sp2) فإن ا	لزوايا بين الأَّفلاك المهجنة	تساوي :
109.5° □	180° □	120° □	90° □
6- إذا كان التهجين م	ن النوع (sp) فإن الز	وايا بين الأفلاك المهجنة ت	ساوي :
109.5° □	180° □	120° □	90° □
7– أحد الهركبات التالب	ية يكون تهجين ذرة ا	لكربون فيه من النوع (3	s) هو :
O = C= O 🗖	CH₄ □	$H_2C = CH_2 \square$	нс ≡ сн □
8- عدد التداخلات الم	حورية بين الأفلاك الم	ختلفة في جزي _، الكلوروف	ورم CHCl _{3 ه} و :
4 🗖	3 🗖	1 🗖	2 🗖
9- عدد التداخلات الجا	انبية بين الأفلاك المذ	H_6 تلفة في جزئ البنزين	: C _c
4 🗖	3 🗖	1 🗖	2 🗖

CH₂Br₂ □	C ₂ H ₂ □	CH₃CH₃ □	CH₄ □
2 <u>2</u> <u>—</u>			
	تستطیع عہل :	مهجنة من النوع SP3	11- ذرة الكربون ال
لة باي	🗖 رابطتین سیجما ورابط	ما ورابطة با <i>ي</i>	🗖 ثلاث روابط سيج
	🗖 اربع روابط سيجما	ورابطة سيجما	🗖 ثلاث روابط باي
	نستطيع تكوين :	بهجنة من النوع SP2 ز	12- ذرة الكربون الر
لة باي	🗖 رابطتين سيجما ورابط	ا ورابطة باي	🗖 ثلاث روابط سيجه
	🗖 اربع روابط سيجما	رابطة سيجما	🗖 ثلاث روابط باي و
	ستطيع تكوين :	بهجنة من النوع SP تى	13- ذرة الكربون الر
ین با <i>ی</i>	🗖 رابطتين سيجما ورابطت	ما ورابطة با <i>ي</i>	🗖 ثلاث روابط سيجه
	🗖 اربع روابط سيجما	رابطة سيجما	🗖 ثلاث روابط بای و
sp3) هو :	هجين لذرة الكربون (3	تالية يكون فيه نوع الت	14- أحد الجزيئات ال
C ₆ H ₆ □	C ₂ H ₄ □	C_2H_2	CH₄ □
	: الإيثين (C ₂ H ₄) هو	رة الكربون في جزي،ا	15- نوع التهجين لذ
sp²d □	sp³ □	sp^2 \square	sp □
	: هو (C ₂ H ₂) هو	رة الكربون في جزي،ا	16- نوع التهجين لذ
sp , sp^2 \square	sp³ □	sp² □	sp □
H) فيه (° 180) وهو:	لروابط C - C - H) لروابط	تالية تكون الزوايا بين ا	17– أحد الجزيئات ال
C_2H_6	C ₂ H ₄ □	C_2H_2	CH₄ □
ى منهما SP فان صيغة المركب ه <i>ي</i>	ين كربون التمجين في كر	دروكربوني يتكون من ذرت	18- مركب عضوي مي
$H_3C - CH_2 - CH_3$	$H-C \equiv C-H$	H_3C-CH_3	$H_2C = CH_2$

 π و باي δ و باي ماى روابط سيجها δ

البنزين	غاز الإيثاين	غاز الإيثين	غاز الميثان	وجه المقارنة
C ₆ H ₆	нс≡ сн	$H_2C = CH_2$	CH ₄	الصيغة الكيميائية
				الصيغة التركيبية
				عدد الروابط σ
				عدد الروابط π
				التهجين في الكربون
				الشكل الفراغي للأفلاك
				المهجنة
				الزوايا بين الأفلاك المهجنة
				لكل ذرة كربون
				عدد الأفلاك المهجنة لكل
				ذرة كربون
				عدد الأفلاك غير المهجنة
				لكل ذرة كربون

<u> - الشكل المقابل والذي يمثل الصيغة البنائية لحمض الأسبتيك</u>

<u>والمطلوب :</u>

- 1 **–** نوع التهجين لذرة الكربون رقم (1) هو : -------
- 2 نوع التهجين لذرة الكربون رقم (2) هو : ---------
- حدد نوع الروابط التي تربط ذرة الكربون رقم (2) بكل من ذرتي الأكسجين -3

الرابطة الأولى هي رابطة : ------ , الرابطة الثانية هي الرابطة : ------